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Abstract.9

Background: Alzheimer’s disease (AD) is a severe health problem. Challenges still remain in early diagnosis.10

Objective: The objective of this study was to build a Stacking framework for multi-classification of AD by a combination
of neuroimaging and clinical features to improve the performance.

11
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Methods: The data we used were from the Alzheimer’s Disease Neuroimaging Initiative database with a total of 493 subjects,
including 125 normal control (NC), 121 early mild cognitive impairment, 109 late mild cognitive impairment (LMCI), and
138 AD. We selected structural magnetic resonance imaging (sMRI) features by voting strategy. The imaging features,
demographic information, Mini-Mental State Examination, and Alzheimer’s Disease Assessment Scale-Cognitive Subscale
were combined together as classification features. We proposed a two-layer Stacking ensemble framework to classify four
types of people. The first layer represented support vector machine, random forests, adaptive boosting, and gradient boosting
decision tree; the second layer was a logistic regression classifier. Additionally, we analyzed performance of only sMRI
feature and combined features and compared the proposed model with four base classifiers.
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Results: The Stacking model combined with sMRI and non-imaging features outshined four base classifiers with an average
accuracy of 86.96%. Compared with using sMRI data alone, sMRI combined with non-imaging features significantly improved
diagnostic accuracy, especially in NC versus LMCI and LMCI versus AD by 14.08%.
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Conclusion: The Stacking framework we used can improve performance in diagnosis of AD using combined features.24
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INTRODUCTION 26

Alzheimer’s disease (AD) is a progressive neu- 27

rodegenerative disease with cognitive decline and 28

physical impairment [1], and millions worldwide 29

continue to suffer from AD [2]. The development 30

of effective treatments remains stalled, under certain 31

situation medical field emphasizes early diagnosis 32

[3]. Mild cognitive impairment (MCI) is a transi- 33

tional stage between the normal controls (NC) and 34

AD [4]. Individuals with MCI develop to AD with a 35

conversion at an annual rate of 5–25% [5]. In order 36

to define an earlier onset of disease, MCI can be 37

divided into early mild cognitive impairment (EMCI) 38
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and late mild cognitive impairment (LMCI) accord-39

ing to Alzheimer’s Disease Neuroimaging Initiative40

(ADNI) database [6]. Some studies have proven that41

individuals with LMCI are more subjected to convert42

to AD than individuals with EMCI [7]. MCI versus43

AD classification itself is a more difficult problem44

than distinguishing between AD and NC, because45

MCI diagnosis is stuck at a gray area and can be46

easily confused with AD or NC [8]. Recently, more47

research criteria have been proposed for early diag-48

nosis of AD or MCI [9], which plays a vital role in49

timely prevention and treatment of AD.50

Current diagnosis standards depend on neuropsy-51

chological assessments and brain imaging techniques52

for individuals with AD. Neuropsychological assess-53

ments are simple and practical, especially in the54

elderly at the community or in areas with poor med-55

ical conditions. Among brain imaging techniques,56

structure magnetic resonance imaging (sMRI) is a57

safe, non-invasive, and objective technology, which58

produces high resolution spatial images. Based on59

cerebral atrophy, sMRI can offer reliable informa-60

tion about the progression of AD [10]. Region-based61

analysis methods are employed to examine volume of62

brain and detect shrinkage of brain tissue for detecting63

differences in images [11]. The key of region-based64

analysis methods is the determination of the region65

of interest (ROI) which can be utilized to identify the66

anatomical differences to assist diagnosis [12].67

Though tremendous progress has been made in68

diagnosis of AD, an imprecise diagnostic environ-69

ment still exists. On the one hand, most of the existing70

studies choose only one classifier or compare several71

classifiers and screen the best one as the final classi-72

fier. Classifiers boast their own advantages and call73

for some specific applications. Gray et al. classified74

AD, MCI, and NC only by random forest (RF) [13].75

Ezzati et al. applied six machine learning methods:76

decision trees (DT), support vector machines (SVM),77

K-nearest neighbor, ensemble linear discriminant,78

boosted trees, and RF to classify NC and AD; the79

best model was used for predicting clinical outcome80

of MCI [14]. Zhe et al. also only selected adaptive81

boosting (AdaBoost) to complete the classification82

task [15]. On the other hand, multi-classification still83

faces lower accuracy. Jin et al. used DT to classify84

NC, MCI, and AD with an accuracy of 56.52% [16].85

Son et al. classified AD, MCI, and NC using RF and86

MRI, and the accuracy was 53.33% [17]. Zhe et al.87

adapted AdaBoost to distinguish AD, MCI, and NC88

with an accuracy of 75.76% [15]. The existing stud-89

ies about multi-classification have the poor diagnostic90

performance, which may result in diagnostic errors in 91

clinical settings. 92

It could be helpful to combine several classifiers 93

to enhance diagnostic performance for classification 94

of AD. Stacking, an ensemble method, combines dif- 95

ferent base classifiers into one meta-classifier, which 96

proves simplicity and high performance with com- 97

bined capability of different classifiers [18, 19]. In 98

this study, we designed a Stacking framework to 99

build a multi-classification (NC/EMCI/LMCI/AD) 100

by combining sMRI, neuropsychological assess- 101

ments, and demographic information as to enhance 102

performance of the diagnosis. In the first layer, four 103

base classifiers included SVM, RF, AdaBoost, and 104

gradient boosting decision tree (GBDT). We chose 105

logistic regression (LR) in the second layer to fuse 106

outputs of first layer and get the final result of classi- 107

fication. 108

METHODS 109

ADNI dataset 110

The data we used were from the ADNI database 111

(http://adni.loni.usc.edu). The ADNI, a public- 112

private partnership, was launched in 2003 by Michael 113

W. Weiner, and subjects were recruited from USA and 114

Canada. The primary goal of ADNI is to test whether 115

the serial MRI, PET, other biological markers, and 116

neuropsychological assessments can be combined to 117

measure the progression of MCI and early AD. The 118

identification of sensitive and specific markers of 119

early AD progression is intended to aid researchers 120

and clinicians to develop new treatments and monitor 121

their effectiveness, as well as lessening time and cost 122

of clinical trials. The research protocol was approved 123

by each the local ethical committee and the written 124

informed consent was obtained from each participant. 125

For more information, see http://www.adni-info.org. 126

Participants 127

There are four stages of ADNI, and the data 128

we used were mainly derived from ADNI-2&GO. 129

There were 493 participants in our study, 125 NC, 130

121 EMCI, 109 LMCI, and 138 AD, respectively, 131

whose baseline MRIs were available. Demographic 132

information comprised age, gender (male/female), 133

years of education, and marital status (mar- 134

ried/single (unmarried, divorced, widowed)). The 135

neuropsychological assessments we used included 136

the Mini-Mental State Examination (MMSE) and 137

http://adni.loni.usc.edu
http://www.adni-info.org
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Fig. 1. The Stacking framework design.

the Alzheimer’s Disease Assessment Scale (ADAS-138

Cog11). These non-imaging features, known as risk139

factors of AD, can be easily obtained by non-AD140

specialists. We defined the above two part of non-141

imaging features as clinical information.142

Image data preprocessing143

All subjects were scanned by the 3.0T MR scan144

and the parameters were defined TR = 2300 ms, TE =145

2.98 ms, flip angle = 90◦, thickness = 1.2 mm,146

[FOV] = 240 × 240 mm2 and matrix size = 256 ×147

256. We used Statistical Parametric Mapping148

(SPM12) on MATLAB platform for preprocessing.149

The original sMRI images were converted from150

DICOM to NIFTI format. We used the Montreal151

Neurological Institute space for spatial normal-152

ization. sMRI images were segmented into three153

different tissues. Our work focused on gray matter.154

The sMRI was divided into 90 brain regions using155

the automatic anatomical labeling (AAL) template in156

REST software, and gray matter volume (GMV) was157

extracted. The corresponding names of AAL brain158

template subdivisions are shown in Supplementary159

Table 1, where an odd number indicates the left brain160

and an even number indicates the right brain.161

Feature selection162

In the neuroimaging community, reduction of fea-163

tures is a critical and essential process before training164

the model. The main purpose of this process is165

to select the most relevant features and remove166

redundant ones to avoid over-fitting in models. Fea- 167

ture selection methods are divided into the following 168

three ones: filter, wrapper, and embedded [20]. How- 169

ever, previous studies have argued that wrapper and 170

embedded are superior to filter methods in neu- 171

roimaging data [21, 22]. In this study, we employed 172

support vector machine recursive feature elimination 173

(SVM-RFE), LR based on L1 regularization, and 174

GBDT to select image features. The final features 175

were selected more than once to ensure better stability 176

and less redundancy. 177

Classification models 178

We applied six binary classifications to achieve 179

multi-classification. The six binary classification 180

tasks were NC versus EMCI, NC versus LMCI, NC 181

versus AD, EMCI versus LMCI, EMCI versus AD, 182

and LMCI versus AD. 183

The purpose of ensemble is to combine multiple 184

algorithms to improve performance. Figure 1 illus- 185

trates the structure of Stacking procedure. Stacking 186

contains two layers. In the first layer, the individual 187

classification models represented heterogeneity are 188

trained on training sets. The base classifiers in the first 189

layer take two requirements. The first one involves 190

high diversity and the second one emphasizes high 191

accuracy. In this study, we used four base classifiers: 192

SVM, RF, AdaBoost, and GBDT in the first layer, 193

which have different modeling ideas and good perfor- 194

mance in cross-validation. The four parallel results 195

of classifiers were calculated. In the second layer, 196

the meta learner should have strong generalization 197



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

4 D. Chen et al. / A Stacking Framework for Multi-Classification of Alzheimer’s Disease

Table 1
Demographics of participants

Characteristics NC EMCI LMCI AD χ2/F p

N 125 121 109 138
Age (mean ± SD)/y 73.53 ± 6.37 70.71 ± 6.74 71.45 ± 7.03 74.73 ± 8.19 8.49 < 0.001
Gender (n (%))

Male 65 (48.00%) 71 (58.68%) 59 (54.13%) 80 (57.97%) 3.67 0.302
Female 60 (52.00%) 50 (41.32%) 50 (45.87%) 58 (42.03%)

Education (mean ± SD)/y 16.56 ± 2.54 16.00 ± 2.59 16.52 ± 2.58 15.67 ± 2.68 3.56 0.014
Marriage status (n (%))

Married 81 (64.80%) 94 (77.69%) 83 (76.15%) 119 (86.23%) 16.88 < 0.001
Single 44 (35.20%) 27 (22.31%) 26 (23.85%) 19 (13.77%)

MMSE (mean ± SD) 29.03 ± 1.24 28.43 ± 1.54 27.64 ± 1.79 23.09 ± 2.13 328.87 < 0.001
ADAS-Cog11 (mean ± SD) 5.94 ± 3.10 7.46 ± 3.17 11.70 ± 3.17 20.93 ± 7.18 246.33 < 0.001

MMSE, Mini-Mental State Examination; ADAS-Cog11, Alzheimer’s Disease Assessment Scale contains 11 items; SD, standard deviation.

ability to correct the bias of base learners and avoid198

over-fitting [23, 24]. Hence, the LR was trained in199

the second layer to fuse classifying outputs from the200

first layer. Finally, the classification results were cal-201

culated using the test sets, and evaluation indicators202

were established for classification performance. And203

we used RF to rank the importance of selected brain204

regions and clinical features in each classification.205

Performance metrics206

We used the Scikit-Learn machine learning library207

in Python 3.8.5 software to build AD classifica-208

tion diagnostic models. Nested cross-validation was209

applied in this study. To evaluate the performance210

of classifiers, the four indicators: accuracy (ACC),211

recall, F1 score and the area under the ROC curve212

(AUC) were chosen. DeLong’s test was used to ver-213

ify AUC. The parameters are listed in Supplementary214

Table 2.215

RESULTS216

Clinical information217

Table 1 summarizes participants’ clinical char-218

acteristics. Among them, 275 (55.78%) were male219

and 218 (44.22%) were female; the mean age was220

72.71 ± 7.31 years, with range from 55 to 90 years221

old. The mean years of education was 16.16 ± 2.60222

years, ranging from 9 to 20 years. As for the mari-223

tal status, 377 (76.47%) were married, 116 (23.53%)224

were single (unmarried, divorced, widowed). The225

mean score of MMSE stood at 26.92 ± 2.97 and226

ADAS-Cog11 represented 11.78 ± 7.81. Beyond227

gender, these features were statistical significance,228

which were selected into the AD classification model.229

Selected features 230

The specific results of features extracted by three 231

feature selection methods at each binary classifica- 232

tion task are summarized in Supplementary Table 3. 233

The brain regions retained at each binary classifica- 234

tion task after feature selections by voting strategy are 235

shown in Table 2. The main brain regions that eventu- 236

ally entered classification models were hippocampus, 237

parahippocampal gyrus, amygdala, superior limbic 238

gyrus, thalamus, middle temporal gyrus, and infe- 239

rior temporal gyrus. Furthermore, the correlations 240

between these screened brain regions and clinical 241

information showed that the majority of brain regions 242

were associated with age, ADAS-Cog11, and MMSE, 243

see Supplementary Tables 4–9 for specific results. 244

Classification results 245

Our Stacking framework could perform multi- 246

classification of AD using sMRI data and a 247

combination of sMRI and non-imaging features. NC 248

versus AD data were cited as an example to explain 249

the classification results. The output metrics of four 250

base classifiers and Stacking are detailed in Table 3. 251

When sMRI was taken as classification feature only, 252

the result of four base classifiers presented relatively 253

ordinary performance, and ACC, recall, AUC and F1 254

score were below 88%. However, compared with base 255

classifiers, Stacking boasted a better performance 256

especially in AUC. The similar results were showed 257

in sMRI joined together with non-imaging features. 258

The performance metrics of four base classifiers were 259

all below 98%, while Stacking outperformed base 260

classifiers as it was represented by 0.9999 of AUC 261

particularly. 262

Compared with only sMRI, the Stacking of sMRI 263

joined together with non-imaging features in NC 264
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Table 2
The results of feature voting

Stage Image features

NC versus EMCI Frontal Sup L, Frontal Sup Medial R, Rectus L, Cingulum Mid R, Cingulum Post L, Hippocampus R,
Parahippocampal L, Parahippocampal R, Calcarine L, Cuneus L, Lingual L, Lingual R, Occipital Inf R,
SupraMarginal L, Paracentral Lobule R, Pallidum L, Thalamus R, Heschl R, Temporal Pole Mid L,
Temporal Pole Mid R, Temporal Inf L

NC versus LMCI Hippocampus L, Hippocampus R, Parahippocampal R, Amygdala R, Calcarine L, Lingual L, Lingual R,
Occipital Mid L, Postcentral R, Putamen L, Thalamus L, Temporal Inf R

NC versus AD Hippocampus L, Hippocampus R, Parahippocampal R, Amygdala L, Amygdala R, Calcarine L, Lingual L,
SupraMarginal L, Angular L, Thalamus L, Temporal Mid L, Temporal Inf L

EMCI versus LMCI Frontal Sup R, Olfactory L, Rectus R, Cingulum Mid R, Cingulum Post L, Hippocampus L, Hippocampus R,
Amygdala L, Amygdala R, Cuneus R, Occipital Mid L, SupraMarginal R, Precuneus L, Thalamus L,
Temporal Sup R, Temporal Mid L

EMCI versus AD Cingulum Mid R, Cingulum Post L, Hippocampus L, Hippocampus R, Parahippocampal R, Amygdala L,
Amygdala R, Occipital Sup L, Occipital Mid R, Occipital Inf R, Precuneus L, Thalamus L, Thalamus R,
Temporal Mid L, Temporal Inf L

LMCI versus AD Supp Motor Area L, Frontal Sup Medial L, Hippocampus L, Parahippocampal L, Amygdala L, Amygdala R,
Fusiform L, Postcentral R, Parietal Inf L, SupraMarginal L, SupraMarginal R, Temporal Mid L,
Temporal Inf L

Table 3
The classification result of NC versus AD

Classifier ACC recall AUC F1 score

sMRI SVM 0.8666 0.8675 0.8629 0.8707
RF 0.8515 0.8573 0.8466 0.8550

AdaBoost 0.8171 0.8047 0.8126 0.8215
GBDT 0.8554 0.8496 0.8503 0.8568

Stacking 0.8937 0.8768 0.9522 0.8966
sMRI+clinical information SVM 0.9734 0.9788 0.9748 0.9736

RF 0.9771 0.9631 0.9766 0.9779
AdaBoost 0.9657 0.9791 0.9622 0.9704

GBDT 0.9733 0.9767 0.9699 0.9751
Stacking 0.9873 0.9836 0.9999 0.9895

versus AD were increased to different degrees, where265

recall and ACC value increased by 10.68% and266

9.36%. The sMRI combined with non-imaging fea-267

tures showed significant advantages, especially in the268

NC versus LMCI stage with an increase in recall of269

up to 19.19%. Figure 2 shows the results of Stacking270

using sMRI data alone and sMRI combined with non-271

imaging features in each classification. To verify the272

efficacy of sMRI joined together with non-imaging273

features, we performed Delong’s test for AUC values274

in the Stacking results, which confirmed statistical275

significance except NC versus EMCI. Of note, the276

classification result of features combined with sMRI277

and non-imaging features outperformed only sMRI278

feature.279

The results of the other five binary classifications280

showed the same effect, as described in Supple-281

mentary Tables 10–14. And the result of first ten282

importance features are shown in Fig. 3. The results283

indicated that ADAS-Cog11 plays an important role284

in all classifications.

DISCUSSION 285

In our study, we designed a Stacking framework 286

to improve performance of multi-classification based 287

on the sMRI and combined features, and the result of 288

features with sMRI and clinical information exhibited 289

better classification ability than only sMRI feature. 290

In general, there is inherent conflict between accu- 291

racy and diversity of individual learners, the more 292

diversity, the less accuracy. Actually, it is hoped that 293

different base learners can be “accurate but differ- 294

ent”. In this study, four base learners were selected 295

as the first layer learner. Among them, SVM is a 296

single classifier, while RF, AdaBoost, and GBDT 297

are three different ensemble models. Comparison of 298

these five models, the experimental results showed 299

that our Stacking framework can achieve strong com- 300

plementarity between different base learners. The 301

most pronounced result was EMCI versus LMCI clas- 302

sification using combined features, which had the 303

most significant increase in AUC value. However, in 304
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Fig. 2. The results of Stacking classification.

Fig. 3. The feature importance ranking.
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Table 4
Classification performance of existing studies

Study Subjects Algorithm Features Overall ACC

Ebadi et al.
[26]

15AD/15MCI/15CT Ensemble learning by voting
strategy

Diffusion Tensor Imaging 80.00% (AD versus CT)
83.30% (AD versus MCI)
70.00% (MCI versus CT)

Sorensen et al.
[27]

100AD/100MCI/
100cMCI/100NC

Ensemble SVM using linear
kernel

sMRI, age, sex, and MMSE 55.6%

Ensemble SVM using radial
basis function (RBF) kernel

55.0%

Gray et al. [13] 37AD/34sMCI/
41pMCI/35HC

RF MRI 89.00% (AD versus HC)
PDG-PET 74.60% (MCI versus HC)
CSF 58.40% (sMCI versus pMCI)

Our
framework

138AD/109LMCI/
121EMCI/125NC

Stacking sMRI, neuropsychological
assessments and demographic
information

72.70% (NC versus EMCI)
85.63% (NC versus LMCI)
98.73% (NC versus AD)
80.29% (EMCI versus LMCI)
95.38% (EMCI versus AD)
89.01% (LMCI versus AD)

CT, healthy subjects; cMCI, converting MCI; sMCI, MCI individuals who have progressed to AD; pMCI, MCI individuals who have so far
remained stable; PDG-PET, positron emission tomography imaging with the radiotracer [18F]-fluorodeoxyglucose; CSF, cerebrospinal fluid.

NC versus AD and LMCI versus AD, the Stacking305

classification results of AUC using combined features306

provided only a modest boost compared with base307

classifiers. This is owing to the progression of AD, the308

brain structure gaps are most evident, which lead to a309

higher performance of four base classifiers. We inte-310

grated the four base classifiers that had achieved high311

classification performances thus the performance did312

not improve significantly.313

Our study adapted multiple binary classifications314

for the purpose of multi-classification. Regardless of315

whether Stacking framework were used, the classi-316

fication of NC versus AD had the best effect using317

combined features, and AUC values reached more318

than 96% in the base classifiers, which can be under-319

stood that atrophy of brain structures does differ in the320

NC and AD. Compared with previous related studies,321

our work performed with higher accuracy, as shown322

in Table 4. In our study, each binary classification323

with combined features showed good discriminative324

ability and overall ACC of classification was 86.96%.325

Our study also found that using combined features326

can produce more powerful classifiers compared to327

using sMRI feature alone. Especially in NC ver-328

sus LMCI classification, the recall of Stacking was329

increased by 19.19%. Most likely, the cognitive sta-330

tus and clinical information of these two stages are331

quite different. This prompts us to take early cogni-332

tive intervention for LMCI subjects. In EMCI versus333

LMCI, the performance of these two statuses had334

more subtle improvement using sMRI combined with335

non-imaging features and they were subjected to336

classification difficulties. The possible reason is that337

EMCI and LMCI belong to the MCI status, the 338

differences from degree of atrophy in brain and clin- 339

ical cognition between the two are small making it 340

more difficult to distinguish. Motter et al. also found 341

that there were no statistically significant differences 342

between the EMCI and LMCI groups in terms of 343

lesion volume [25]. In our results, the growth of 344

AUC in NC versus EMCI have no statistical differ- 345

ence in combined features, which likely due to the 346

fact that the total contribution of clinical features was 347

smaller than sMRI. This signals the need for physi- 348

cians to spend more effort in differentiating between 349

these two statuses. Taken together, combined features 350

could provide more information about the likelihood 351

of cognitive impairment. 352

The sMRI scans with high analytical accuracy 353

show changes in brain structures monitoring AD pro- 354

cess [28], since the typical distribution of gray matter 355

atrophy revealed by sMRI may achieve better diag- 356

nostic accuracy [28, 29]. As such, in this study, we 357

mainly focused on GMV changes of sMRI in AD 358

analysis. Our research found the main brain atro- 359

phies were located in hippocampus, parahippocampal 360

gyrus, amygdala, and temporal lobe. The behav- 361

ioral studies have shown that learning and memory 362

storage and retrieval play a critical role in the hip- 363

pocampus [30, 31]. The parahippocampal gyrus is 364

also associated with memory storage and retrieval. 365

Echavarri used sMRI to distinguish NC, aMCI, and 366

AD finding that the difference in parahippocampal 367

volume atrophy was greater than that in hippocam- 368

pus [32]. The amygdala is associated with emotion, 369

learning, and memory involving in the processing of 370
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long-term memory and consolidating memory stor-371

age in other parts of the brain [33]. In addition to the372

brain regions mentioned above, the thalamus, supe-373

rior limbic gyrus, middle temporal lobes, and inferior374

temporal lobes were also associated with disease pro-375

gression by feature selection. The thalamus is the376

higher center of sensation, and it is also bound up with377

memory function and emotion regulation. The thala-378

mus is involved in many different neuronal pathways379

and its function is closely related to motor behav-380

ior, emotion, motivation, association, and cognitive381

ability [34]. The temporal lobe is primarily relevant382

to hearing, language comprehension, memory, and383

mental activity. Atrophy of brain tissue is a long384

process and occurs in the hippocampus and internal385

olfactory cortex firstly, and then affects the parietal,386

temporal, and frontal lobes. It has been documented387

that temporal lobe atrophy is exacerbated in individ-388

uals with MCI and AD [25, 35]. Besides, there is389

an association between these brain regions and clin-390

ical features (age, ADAS-Cog11, and MMSE) and391

such an association might be considered as a new392

biomarker or might provide evidence to be considered393

for future studies.394

The goal of our study is to ultimately create an auto-395

mated machine learning and find biomarkers to help396

physicians to make more streamlined and accurate397

diagnoses. The Stacking framework we designed has398

significant translational potential in AD, which can399

help physicians by offering an objective assessment400

and a second opinion. In addition, our framework401

can be applied to other diseases, such as Parkinson’s402

disease. The combination of features from different403

modalities may considerably increase the potential404

of AD diagnosis. These medical examinations can be405

easily obtained and used for early screening of AD406

in the community. This will not only reduce the bur-407

den on society and families, but also promote early408

detection of AD achieving a reasonable allocation409

of social resources. In such cases, our model may410

aid non-invasive monitoring of AD development.411

Furthermore, the development of methods which effi-412

ciently combines multimodal features is a field to be413

explored by next studies.414

However, some limitations also remain in our415

study. First, this study extracted GMV from sMRI416

as morphological characteristics, demographic infor-417

mation, and neuropsychological assessments. Further418

studies will focus on incorporating multiple features419

such as fMRI, DTI, PET, CSF, and genes. Second,420

other base classifiers, ensemble learning algorithms,421

and construction strategies could be incorporated to422

analyze cognitive decline in the elderly and provide 423

new references to assist clinical diagnosis. Third, we 424

reported accuracy of Stacking framework in training 425

and testing datasets, which showed slight over-fitting, 426

and specific results are available in Supplementary 427

Table 15. In addition, we will use external valida- 428

tion to generalize the stability of performance. These 429

limitations should be addressed in our future studies. 430

In conclusion, we used six binary classification 431

tasks to achieve the purpose of multi-classification. 432

The Stacking framework combining SVM, RF, 433

AdaBoost, and GBDT model was employed to 434

classify NC/EMCI/LMCI/AD based on sMRI and 435

non-imaging features. The performance of our Stack- 436

ing framework was improved significantly, and the 437

result of combined features outperformed only sMRI 438

feature. The model we constructed in this study 439

provides an approach for the future translation of 440

neuroimaging into AD benefit. 441
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